If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2c^2+8c=42
We move all terms to the left:
2c^2+8c-(42)=0
a = 2; b = 8; c = -42;
Δ = b2-4ac
Δ = 82-4·2·(-42)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-20}{2*2}=\frac{-28}{4} =-7 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+20}{2*2}=\frac{12}{4} =3 $
| 3x=57= | | 10+4(p+7)=2(2-p) | | 3x+23=540 | | +2y=20/2 | | 73=4x-13-19 | | 5b+6=7b+10 | | (4x+1)+(6x-1)=90 | | 4t=2t=16 | | 5/2x+1/2x=(10)1/2+7/2x | | B(0)=18-0.5x | | x+10-1x=8(x+10) | | 24x=28x | | 9x+80-1x=9(x+10)C | | -11x+9=6x-1 | | 6,000+1.50(x)=12,000+x | | 3y-1y+y+40+90=180 | | 3x+11=4x-15 | | F(n)=6n+75 | | 2s2=72 | | 65=-16t^2+65 | | 1x/2=150 | | d^2+30d=0 | | d^2+30=0 | | 14y-9y-12y=59.65 | | d2+30d=0 | | 14y-9y-12=59.65 | | 4x=+3-2 | | (w+38)+(w-39)=w | | 3(p+2)=12. | | 4t=2t+16 | | 5(5x-6)=3(x-7) | | r+3+6=2 |